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Quantum Qualitative Dynamics 

Craig C. Martens  1 

Received October 3, 1991 

We describe our work on qualitative methods for visualizing the quantum 
eigenstates of systems with nonlinear classical dynamics. For two-degree-of- 
freedom systems, our approach is based on the use of generalized coherent 
states, and allows systems with nonoscillator kinematics to be investigated. The 
general approach is illustrated with two examples involving vibration-rotation 
interaction in polyatomic molecules. We apply the coherent states of the Lie 
group H4 | SU(2) to define quantum surfaces of section for a model involving 
centrifugal coupling of a harmonic bend with molecular rotation, and 
SU(2) | SU(2) coherent states to study two harmonic normal modes coupled 
to overall molecular rotation through coriolis interaction. In both systems, 
quantum states are visualized on the rotational surface of section and compared 
with the corresponding classical phase space structure. Striking classical- 
quantum correspondence is observed. We then describe recent results on the 
quantum states of (N ~> 3)-dimensional systems of coupled nonlinear oscillators, 
which reveal a quantum delocalization that is reminiscent of classical Arnold 
diffusion. 

KEY WORDS: Classical~quantum correspondence; nonlinear dynamics; 
quantum chaos; phase space; coherent states; Arnold diffusion; Lie group 
theory. 

1. I N T R O D U C T I O N  

O n e  of  the m o s t  s igni f icant  a c h i e v e m e n t s  of  the  phys ica l  sc iences  in the 

e i g h t e e n t h  c e n t u r y  was  the  d e v e l o p m e n t  o f  ana ly t i ca l  mechan ics .  (1'2) T h e  

w o r k  o f  N e w t o n ,  Euler ,  L a g r a n g e ,  H a m i l t o n ,  a n d  o the r s  m a d e  poss ib le  for  

the  first t ime  a cons i s t en t  m a t h e m a t i c a l  de sc r ip t i on  of  a b r o a d  r ange  of  
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physical phenomena. The main inspiration for this advance came from 
celestial mechanics, and the prediction of heavenly events, such as eclipses 
and the periodic reappearances of comets, were dramatic examples of the 
success of analytical mechanics. 

However, celestial mechanics also provided a profound defeat for 
analytical dynamics. This came about in attempts to investigate the long- 
time stability of the solar system. This n-body problem cannot be solved in 
closed form, and thus perturbative methods were used in an attempt to 
obtain an analytic description of planetary orbits that incorporated all 
significant gravitational interactions. During the last decades of the 
eighteenth century, it became clear that the perturbative approaches 
inevitably lead to divergent results. With the possibility of an analytical 
description of the n-body problem precluded, classical mechanics faced a 
crisis. 

In an effort to circumvent this obstacle, the mathematician Henri 
Poincar6 and a number of contemporaries developed a new approach to 
the study of dynamics. (3'4) The focus was changed from an effort to obtain 
analytic solutions for individual orbits using classical mathematical analysis 
to the study of the global geometric properties of vector fields in phase 
space and the topological structure of families of solutions to these equa- 
tions of motion. The emphasis was on the organization of periodic orbits 
in phase space, their stability, and the bifurcations possible as system 
parameters were changed. A qualitative understanding of the geometry of 
dynamics was the goal of this new approach. (4) 

Since its introduction, the qualitative theory of dynamical systems has 
been a powerful aid in proving theorems about the topology of orbits and 
invariant surfaces in phase space, their stability to small perturbations, and 
the possible modifications of this structure that bifurcations could induce. (4) 
More recently, with the increasing availability of computers, direct numeri- 
cal solution to the equations of motion of nonlinear systems has become 
possible. This development greatly stimulated progress in dynamical 
systems theory, allowing a fruitful combination of numerical experiment 
and qualitative analysis. Many new phenomena have been discovered by 
"experimental mathematics" on the computer, providing direction for sub- 
sequent analysis and formal proof. (4) 

For systems with two degrees of freedom, a particularly useful 
qualitative technique is the Poincar6 surface of section, (4) which is a 
numerically-generated two-dimensional slice through the three-dimensional 
constant-energy subspace of the four-dimensional phase space. By computing 
families of trajectories having the same total energy but differing in their 
initial conditions, the foliation of phase-space organizing structures on the 
energy hypersurface can be visualized as they intersect the sectioning plane, 
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in much the same manner that a CAT scan allows the internal organization 
of the three-dimensional human body to be visualized. 

The surface-of-section method has provided a great deal of insight into 
the dynamics of two-degree-of-freedom conservative systems. The details of 
the classical mechanics of many-dimensional systems (i.e., with three or 
more degrees of freedom) are less well understood. (5'6) Such systems cannot 
be visualized easily by the surface-of-section method, as the analogue of the 
two-dimensional section plane is a higher-dimensional hypersurface. Alter- 
native ways of representing the results of computer experiments on many- 
dimensional dynamical systems are required. 

The problems of interest in atomic, molecular, and nuclear physics 
are described by dynamical systems composed of particles interacting 
through nonlinear forces, and are thus similar in many ways to the 
problems of celestial mechanics. An essential difference, of course, is that 
these particles are submicroscopic, and thus require the use of quantum 
mechanics for a correct theoretical treatment. The mathematical structures 
of the conventional formulations of classical and quantum mechanics are 
vastly different: the canonical formalism of classical mechanics for an 
N-degree-of-freedom system is built around Hamilton's ordinary differential 
equations, whose solutions are trajectories in the 2N-dimensional phase 
space of the system, (4) while quantum mechanics describes normalized 
eigenvectors in a (perhaps infinite-dimensional) Hilbert space, (7~ which are 
often represented as a linear combination of a convenient set of basis states. 
In this form, quantum mechanics is not directly amenable to the qualitative 
analysis which is of such utility in classical mechanics. 

In this paper, we describe our recent work on quantum qualitative 
methods. We discuss the general approach to two-degree-of-freedom 
systems, based on the use of generalized coherent states to define a quan- 
tum surface of section, and illustrate the method using two examples from 
the study of vibration-rotation eigenstates of polyatomic molecules. (8-1~ 
We then present recent results from a continuing study of quantum- 
classical correspondence in high-dimensional systems, where the surface of 
section cannot be defined in a useful manner. We show a delocalization 
phenomenon of quantum states along resonance zones that is reminiscent 
of the classical Arnold diffusion mechanism of energy transport in (N/> 3)- 
dimensional systems. (5'6~ 

Qualitative quantum mechanical methods have been applied in a 
number of studies investigating the correspondence principle in nonlinear 
systems. Inspection of wavefunctions in configuration space is a common 
technique, and effects such as the "scarring" of eigenstates by periodic 
orbits embedded in chaotic regions of phase space have been observed. (1~ 
However, for a two-degree-of-freedom system, the two-dimensional 
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configuration space is a projec t ion  of the three-dimensional energy surface, 
and direct comparisons of quantum eigenstates and classical trajectories 
can be made difficult by quantum interference effectsJ 12) 

Classical surfaces of section reveal the nature of phase space structure 
more clearly than configuration space trajectories, and phase space 
representation of quantum mechanics, evaluated on a sect ion generated by 
the intersection of a two-dimensional plane with the three-dimensional 
energy shell, is often a more useful tool for analyzing the properties of 
quantum states. Such an approach can be based on the Wigner function, ~13) 
a phase space representation of quantum mechanics. A related, and often 
more useful, quantity is the Husimi distribution. (14) The Husimi distribu- 
tion is a locally averaged Wigner function, and has the advantages of 
being everywhere positive and more smoothly varying than the Wigner 
function. (~4) In addition, the Husimi function is related to the coherent 
state representation of quantum mechanics. ~5) 

The Wigner and Husimi distributions have been employed previously 
in studies of classical-quantum correspondence in nonlinear dynamical 
systems. Hutchinson and Wyatt calculated a representation of the quantum 
states of the H6non-Heiles potential that is related to the surface of section, 
but based on a projection instead of a section of phase space. (~6) Weissman 
and Jortner constructed quantum surfaces of section of the H6non- 
Heiles system using the coherent state representation of the harmonic 
oscillator. (tT) Brown and Wyatt employed the Wigner function to represent 
the time evolution of a Morse oscillator driven by a periodic laser field. (18) 
Classical-quantum correspondence has been investigated in phase space 
for simple kicked systems, such as the standard map, by a number of 
authors. (19) Gray has compared classical phase space structure with the 
time evolution of the Wigner function for a periodically kicked one- 
dimensional Hamiltonian modeling vibrational predissociation of the 
van der Waals molecule Hel2 .(2~ Lin an Ballentine employed the Husimi 
distribution to study coherent tunneling effects in a driven bistable 
system. ~2~) Benito et al. compared the classical and quantum phase space 
structure of the nonrigid molecule LiCN. (22) Stevens and Sundaram 
calculated a coarse-grained Wigner function to investigate the dynamics of 
driven surface-state electrons. (23) Skodje et al. used the coherent state 
representation to visualize quantum dynamics in their investigation of 
tunneling in a double-well problem. (24) The correlation between classical 
phase space structure and the phenomenology of "scarring" of quantum 
eigenstates by classical periodic orbits has been investigated for strongly 
chaotic systems by Waterland et  al., ~25~ who studied the two-dimensional 
quartic oscillator; Feingold et  a/. (26) and Davis e t a / .  (27) considered the 
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idealized stadium and billiard systems from this perspective. Jensen has 
applied the Husimi representation to explore classical-quantum corre- 
spondence in atomic physics/2s/ In related work, Kellman has developed 
methods to extract a classical-like phase space representation from fitting 
experimental spectra of polyatomic molecules. (29) Husimi and Wigner dis- 
tributions for coupled oscillator systems have been described and reviewed 
by Davis eta/. (27~ and Davis. (3~ 

The work described here focuses on the extension of quantum surfaces 
of section to systems that are more general than coupled harmonic 
oscillators. To illustrate the method, we consider angular momentum-like 
degrees of freedom, whether physical rotation or a fictitious angular 
momentum derived from an SU(2) representation of more general 
problems. We employ these generalized coherent states (15) to define rota- 
tional quantum surfaces of section, and use them to investigate vibration- 
rotation interaction mediated by centrifugal coupling in a rigid bender 
model. (8) In addition, we describe the representation of two nearly 
degenerate harmonic oscillators by an SU(2) model, and investigate 
coriolis interaction of these vibrational degrees of freedom and overall 
molecular rotation by employing SU(2)|  coherent statesJ 9,w) 
Generalizations of phase space representations of quantum mechanics to 
nonoscillator kinematics have also been considered by Kurchan et al. 131) 

The organization of this paper is as follows: in Section 2 we briefly 
describe a definition of generalized coherent states based on the theory 
of Lie groups. In Section 3 we review the definition of a classical surface of 
section for a two-degree-of-freedom system and describe the construction of 
an analogous quantum surface of section using generalized coherent states. 
Section 4 illustrates this general approach using coherent states of the 
direct product group H4| appropriate for a harmonic oscillator 
coupled to a rotational degree of freedom, to construct quantum surfaces 
of section for a rigid bender model of an ABA triatomic molecule under- 
going centrifugal vibration-rotation coupling. These are compared with a 
classical surface of section calculated for the same model. Section 5 then 
describes a coupled spin model for coriolis-induced vibration-rotation 
interaction, based on an SU(2) representation of the two-dimensional 
harmonic oscillator. The coherent states of SU(2)|  are then 
employed to the study the quantum states of this system. In Section 6 
we consider the relatively unexplored problem of classical-quantum 
correspondence in many-dimensional systems by investigating a model 
Hamiltonian describing three coupled nonlinear oscillators. Surfaces of 
section are not readily applicable in this case. An alternative method for 
investigating classical-quantum correspondence is described, and applied 
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to reveal quantum delocalization that is suggestive of the classical 
mechanism of transport in (N>~ 3)-dimensional systems known as Arnold 
diffusion. Finally, a discussion is given in Section 7. 

2. GENERALIZED C O H E R E N T  STATES 

The connection between classical and quantum mechanics can be 
made by considering quantum states which, in some sense, are as "classi- 
cal" as possible--states that are as localized in phase as permitted by the 
uncertainty principle Aq zip >>. h/2/7) The coherent states constitute such a 
representation/15) The most familiar coherent states are those of the one- 
dimensional harmonic oscillator, which are minimum-uncertainty wave 
packets localized in both position and momentum. This maximal localiza- 
tion in phase space allows the center of these states, in the limit h ~ 0, to 
be interpreted as classical variables. 

The coherent states of the harmonic oscillator are defined as mini- 
mum-uncertainty states, or alternatively, as eigenstates of the annihilation 
operator/15) An equivalent definition ~ls) expresses the coherent states as a 
displaced oscillator ground state, generated by the action of a unitary 
operator U(z): 

Iz) = U(z)10) (1) 

with U(z) given by 

U(z) = exp(za* - z 'a)  (2) 

Here, a* and a are the harmonic oscillator creation and annihilation 
operators and z = (q + ip)/.v~ is a complex number. The operator U(z) dis- 
places the state 10) without changing its shape or minimum-uncertainty 
character. The two real parameters (q, p) are interpreted as the center of 
the state in a classical phase space. The states Iz) can be expanded in a 
basis of eigenstates of the number operator ata: 

~=o(nr) 
(3) 

The definition of the harmonic oscillator coherent states is represented 
schematically in Fig. 1. 

The harmonic oscillator coherent states can be generalized to other 
systems in a number of ways. Some approaches are based on the require- 
ment of minimum uncertainty, while other definitions require the 
generalized coherent states to be eigenvectors of a lowering or annihilation 
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Fig. 1. A schematic view of the definition of harmonic oscillator coherent states. The states 
are generated by the action of the unitary operator s on the minimum-uncertainty harmonic 
oscillator ground state. The transformation displaces the state to a position z = (q, p) on the 
complex plane, while retaining its shape and minimum-uncertainty character. The point (q, p) 
is the interpreted as a set of canonical variables in classical phase space. 

operator.  (15) For  our  purposes, the most  convenient  approach  is based 
on defining generalized coherent  states as displaced extreme states in a 
Hilbert space which carries an irreducible representation of a part icular 
Lie group. (15'32) We now summarize this group-theoret ic  definition of  
generalized coherent  states. 

Let f be an element of  the Lie group ~. In practice, g will be given 
as an exponential  of an ant i -Hermit ian linear combinat ion  of  the gener- 
ators of  the group ~ (i.e., a set of operators  closed under  commutat ion) .  
Let I~bo) be a reference state in the Hilbert space of the physical problem. 
The stability subgroup ~ of ~ with respect to the state ]q so) is then 
defined as the set of  all g roup elements of  ~ which leave [~0 )  invariant, 
up to a phase: 

~ l ~ o )  = rq)o)e i~(~) (/~e.~) (4) 

The coset space of  ~ is then the quotient  ~ / ~ ,  so that every group element 
can be written as the product  of  an element in ~ and an element o f  

ad/~: 

~=QA (ee l ,  Ae~ ,  Qe~r (5) 

The coherent  states re)) of  ~ are then defined as the states generated by 
operat ing on Iqso) with an opera tor  f2 e N/J4~: 

leo) = ~2 ]g~o) (6) 
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where o~ denotes a set of group parameters labeling the state. The operator 
(2 is an exponential of an anti-Hermitian linear combination of a subset of 
the generators of the group f#, and the group parameters are related to the 
coefficients of these generators. In the work described here, the parameters 
09 shall always be chosen to be canonical coordinates, and thus directly 
comparable to the phase space variables of the corresponding classical 
system. 

The coherent states of the harmonic oscillator are a special case of this 
general definition.(15) Here, the group f# is H4, the Heisenberg-Weyl group. 
The generators of H4 are a and a t, the annihilation and creation operators, 
the number operator n = ata, and the identity operator 4. The reference 
state is the oscillator ground state 10 >. The number and identity operators 
generate the stability subgroup, and the operators O are given by Eq. (2). 
The group parameters are the coordinates q and p, the real and imaginary 
parts of z. 

We now describe the generalization of the oscillator coherent state to 
problems involving rotational dynamics. The appropriate Lie group for 
rotations is SU(2), which is homomorphic to the rotation group SO(3). 
The generators of SU(2) are the angular momentum components Jx, Jy, 
and Jz. A reference state in the (2j + 1)-dimensional Hilbert space spanned 
by the states {]jm>} (m=-j , . . . ,  j), which are eigenstates of j 2 =  
j 2 + j 2 + j 2  and Jz, is the minimum-uncertainty state [ j - j ) .  The 
operator Jz generates the stability subgroup. The coherent states of SU(2) 
are given by the action of a unitary operator on the reference state [ j - j ) :  

IO~ > = U(O, 06)l J - J >  (7) 

where 

U(O, ~b) = exp(~J+ - ~*J_ ) 

J +_ = & + isy 

0 ~-~ ~e -iO 

(8) 

Here, 0 and ~b are the polar and azimuthal angles on the unit sphere. The 
states I O~b > can be expanded in the basis of eigenstates of j2 and Jz: 

J ( 2 j ' ]  1/2 
10~b> = ~ sinJ+m(0/2) COSJ-m(O/2)e -i(j+m)'k Ijm> (9) 

m= -j \ J +  rn/ 

In order to compare with classical Hamiltonian mechanics, the 
geometrical angles 0 and ~b must be transformed to canonical variables 



Quantum Qualitative Dynamics 215 

! 
x 

(a) 

rz (b) 

U(0,9) ly 

/ 
I x 

k = jcosO 
X=r 

(c) 

Z 

Fig. 2. A schematic view of the definition of SU(2) coherent states. (a) The states are 
generated by the action of the unitary operator U(O, ~) on the state f j - j ) ,  an eigenstate of 
J~ with minimum uncertainty in the x and y components of J. (b) The transformation rotates 
the state to an arbitrary position on the angular momentum sphere, while retaining its shape 
and minimum uncertainty. (c) The surface of each sphere is related to a phase plane through 
a transformation to canonical coordinates. 

(k,)~) obeying the proper  Poisson bracket relations. (33) The t ransformat ion 
is given by ;g = ~b and k = - j  cos 0. (8'9) Physically, k is the projection of  the 
angular  m o m e n t u m  on the z axis, and ;g is the canonically conjugate angle. 

Figure 2 shows schematically the definition of  SU(2) coherent  states. 

3. Q U A N T U M  S U R F A C E S  OF S E C T I O N  

A classical surface of  section for a two-degree-of-freedom Hamil tonian  
system is constructed by integrating Hamil ton ' s  equations of  mot ion  for a 
family of  trajectories with the same initial energy but differing initial condi- 
tions. Each trajectory is followed through  phase space, and the intersec- 
tions of  the orbit  with a plane in phase space (the surface-of-section plane) 
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are determined. A composite plot of these points for the family of trajec- 
tories gives a numerical representation of the underlying invariant surfaces 
resulting from additional constants of the motion beyond energy conserva- 
tion, or, if the system is chaotic, an indication of the absence of additional 
constants of the motion. The classical surface of section gives a clear indica- 
tion of the existence of important phase structures, such as nonlinear 
resonance zones, stable or unstable periodic orbits, and regions of chaotic 
motion. 

Generalized coherent states can be employed to define a quantum 
analogue of the classical surface of section. Here, the invariant quantum 
density of an eigenstate is visualized and compared with the invariant tori, 
stable and unstable manifolds, and other time-independent structure on the 
classical surface of section. By interpreting the center of the coherent state 
as classical canonical coordinates (q, p), the structure of quantum Hilbert 
space can be revealed in a manner that is directly analogous to the classical 
surface of section. This is accomplished by projecting the state ]0) of 
interest onto the coherent state probe: 

P(q, P)=  [ (qpt ~)12 (10) 

The parameters q and p are then interpreted as being classical phase space 
variables. The key point is that the state I 0 )  has been mapped onto a 
classical-like representation: probability density as a function of the canoni- 
cal variables q and p. 

For two-degree-of-freedom systems, a quantum surface of section can 
be defined which allows a parallel comparison of the classical phase space 
structure and quantum eigenstate morphology. In this case, the probe 
states are just the direct product of two one-degree-of-freedom coherent 
states: [qlqzPlP2)= IqlPl)lqzP2), and are thus parametrized by four 
real numbers. These numbers are interpreted as the generalized coordinates 
and conjugate generalized momenta of the corresponding four-dimensional 
classical phase space. A probability density is then defined as 

P(ql, q2, Pl,  P2) = [(qlq2PlP2l~b )[ 2 (11) 

If L~ ) is an eigenstate of a system with energy eigenvalue E, then quantum 
surface of section can be computed by "slicing" this multidimensional func- 
tion in a manner directly analogous to the way a classical surface of section 
is calculated. This is accomplished by constraining the coherent state 
parameters (qa, q2, P~, P2) to lie on the analogue of the classical surface of 
section, using the following conditions: 

(i) q2 = 0 and P2 >0  (surface-of-section plane). 

(ii) H(ql,  q2, P, ,  P2) = E (energy hypersurface). 
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Here H is the expectation value of the Hamiltonian in the coherent state 
basis and E is the quantum energy eigenvalue. The resulting surface-of- 
section probability density p(q~, Pl) is a function of two variables, and can 
be visualized by computing a contour plot. 

4. C E N T R I F U G A L  C O U P L I N G  IN A B A  M O L E C U L E S  

In this section, we illustrate the general approach by calculating 
quantum surfaces of section for a simple model of centrifugal coupling of 
the bend vibration of an ABA triatomic molecule with overall rotation. (8) 
In this idealized system, a harmonic bend degree of freedom interacts with 
the rotation of the molecule through the dependence of the molecular 
moments of inertia on the bend angle. The Hamiltonian considered is given 
by(8~ 

H =  �89 + co2q2) + A(q)j2z + B(q)J~ + C(q)J~ (12) 

where A, B, and C are the molecular rotational constants, q = 0 - 00 is the 
deviation of the bend angle of the molecule from its equilibrium value, p is 
the conjugate bend momentum, and (Jx, Jy, Jz) are the components of the 
total angular momentum of the system, expressed in the body-fixed prin- 
cipal axis frame. (34) The dependence of the rotational constants on q is 
given by Taylor series expansion though quadratic terms. More details and 
numerical values for the parameters in the Hamiltonian are given in ref. 8. 

The components of the classical total angular momentum J are not a 
suitable set of canonical momenta, as they do not have mutually vanishing 
Poisson brackets, ~33) obeying instead 

{ J x ,  = 

{J . ,  = - J .  t13)  

{Jz, .Ix} = -Jy  

where the minus sign results from the body-fixed coordinate system. (8'9'34) 
A suitable set of canonical coordinates for rotation are (Z, k), which are 
related to the components of the angular momenta by the transformation 

j x  = ( j2  _ k2)1/2 cos (z )  

jy = _( j2  _ k2)1/2 sin(z) (14) 

Jz=k  

Physically, k is the projection of the total angular momentum vector on the 
body-fixed z axis, and Z is the conjugate angle variable. 
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Fig. 3 (contmued) 

stable elliptic regions of phase centered at k = 0, corresponding physically 
to rotation of the molecule around the body-fixed x axis. 

This system consists of a harmonic vibration coupled to molecular 
rotation. Quantum surfaces of section for this system can thus be calculated 
by employing the generalized coherent states [qpzk)= Iqp)Izk) of the 
direct product Lie group H4| A rotational surface-of-section 
probability density P(Z, k) for the state ~ is calculated by evaluating 
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the projection p ( q , p , z , k ) = l ( q p x k l ~ ) l  2, subject to the additional 
conditions q = 0, p > 0 (surface-of-section plane condition), and 
(qpzk[ H l q p z k ) = E ~ ,  where E~ is the quantum energy eigenvalue of the 
state ff~, and is set equal to the expectation value of the Hamiltonian in the 
coherent state basis (energy surface condition). 

In Figs. 3b-3d we show contour plots of the surface-of-section prob- 
ability densities calculated for three quantum eigenstates of Eq. (12) with 
energies very close to the classical energy used in Fig. 3a. Each state is 
localized in a different region of phase space. The structure of the states 
closely parallels the corresponding classical behavior. Figure 3b shows a 
state localized on the large elliptic regions around k = 0. Figure 3c gives an 
eigenstate which is centered on the chain of islands resulting from a 2:1 
resonance between vibration and rotation. The state shown in Fig. 3d is 
localized on the unstable periodic orbits and emanating manifolds making 
up the broken separatrix around the 2:1 resonances zones. 

These figures show a strong correspondence between the detailed 
structure of classical phase space, as seen through the Poincar6 surface of 
section, and the localization of the corresponding quantum states, as 
visualized by quantum qualitative analysis. Most of the remaining 
eigenstates of the system show a similar correlation with underlying 
classical behavior. 

5. COUPLED SPIN M O D E L  OF CORIOLIS I N T E R A C T I O N  

In this section, we provide another illustration of classical-quantum 
correspondence in molecular vibration-rotation dynamics. Here, we con- 
sider the coriolis coupling of two nearly degenerate harmonic vibrations by 
interaction with overall molecular rotation. A simplified Hamiltonian that 
captures the general physical features of this problem is given by ~9'1~ 

~1 ~~ ( 2 + q2) + 2 + Boj2 + Co j2 _ 2AonzJz (15) H = -~- (p2 + q~) + - 2  P2 AoJz 

where (ql, qz) are two normal coordinates of the molecule, ( Pl, P2) are 
the conjugate momenta, ml and (/)2 are the normal mode frequencies, 
(Jx, Jy, J~) are the components of the total angular momentum, and Ao, 
Bo, and Co are the molecular rotational constants. Coriolis coupling results 
from the interaction of the total angular momentum J and the vibrational 
angular momentum n. (34) The only term allowed by the symmetry of the 
model considered (9;1~ is the product of the z components of the 
two angular momenta, and appears as the last term of Eq. (15). The z 
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component of the vibrational angular momentum depends on the normal 
coordinates and momenta, and is given approximately by 

r t z = ~ ( q l p 2 - q ~ p ,  ) (16) 

where ~ is the coriolis coupling parameter. Although the system depends 
on three degrees of freedom, conservation of the total vibrational action 
reduces the problem to two dimensions, and so the surface-of-section 
technique can be applied. 

To make this dimensional reduction apparent, we transform to the 
system to a "coupled spin" Hamiltonian (8'1~ by using the SU(2) represen- 
tation of two-dimensional harmonic oscillators. (32'35) We define the three 
components of a second angular momentum through the transformation 
equations 

Sx = l ( q l P z - q 2 P l )  

Sy = �89 q~ q2 + Pl P2) (17) 

Sz 1 2 a(P2 + q2__ 2 2 = P l  - - q l )  

The conservation of the total vibrational action is equivalent to the con- 
stancy of the length of the angular momentum S 2 = 3x_{_ Sy  _~ gz  2 2 S( S "Jr- 1 ). 
Using this transformation, the Hamiltonian becomes 

2 o g ( s + � 8 9  (18) 

A set of canonical coordinates for this coupled angular momentum 
problem is given by a two-dimensional generalization of Eq. (14), (9"1~ 

3x = (3 2 -kl~) '/2 cos(z1) 

3y = (3 2 -  k2) 1/2 sin(z1) 

Sz =k l  

jx = (j2 _/~)1/2 cos(z2) 

j y  = _ ( j 2  _ k2)~/2 sin(;~2) 

Jz = k2 

(19) 

(20) 

In Fig. 4a we show a classical surface of section calculated for this 
system with the classical angular momenta having values s =  10, j = 4 0 .  
(See ref. 9 for further details.) This surface of section corresponds to the 
molecular rotational degree of freedom. A mixture of nonresonant, 
resonant, and chaotic dynamics is seen, resulting from strong breakdown 
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of the separation of vibrational and rotational motion in this system. 
In particular, prominent 2:1 resonance zones are observed for Ik2/jl 
approximately equal to 0.5, while near k = 0 a broad region of chaos is 
visible. 

This system consists of two coupled angular momentum degrees of 
freedom. To calculate quantum surfaces of section for this system, the 
generalized coherent states of the direct product group SU(2)| 
are used, defined as the product of two 1-dimensional SU(2) coherent 
states: IZtz2ktk2)= [Ztkl)Iz2k2). (1~ The surface-of-section and energy 
constraints are applied in the same manner as in the previous example. 

Figures 4b-4e give the (Z2, k2) quantum surfaces of section for four 
eigenstates of this system with eigenvalues near the classical energy used to 
compute Fig. 4a. Figure 4b shows a state that is localized on a nonresonant 
invariant torus near the extreme value of k2 allowed at the energy con- 
sidered. In Fig. 4c another state is given. Here, the probability density is 
large in the 2:1 resonant region of phase, and is centered on the stable 
elliptic islands. The state shown in Fig. 4d is also localized in the 2:1 reso- 
nant region of the surface of section, but is associated with the unstable 2:1 
periodic orbits and their stable and unstable manifolds. Figure 4e shows a 
state that is situated in the chaotic portion of phase space. The state shows 
additional structure and localization, perhaps due to the effect of unstable 
periodic orbits embedded in the chaotic region. (11'25'26) 

The second example provides another illustration of the pronounced 
effect that classical nonlinear dynamics can have on the structure of 
polyatomic molecular vibration-rotation eigenstates. These effects are 
convincingly revealed in these two-degree-of-freedom systems by the 
application of quantum qualitative analysis, as a direct comparison of the 
classical surface of section with its quantum analogue can be made. In 
the next section, we address the extension of qualitative methods to the 
investigation of systems with more than two degrees of freedom, where 
the surface-of-section approach described here cannot be applied. 

6. C L A S S I C A L - Q U A N T U M  C O R R E S P O N D E N C E  IN 
M A N Y - D I M E N S I O N A L  S Y S T E M S  

The nonlinear dynamics of two-degree-of-freedom systems is at 
present fairly well understood. (4'36) The current level of understanding is 
due, to a great extent, to the successful application of numerical simulation 
combined with methods of qualitative dynamics--in particular, the surface- 
of-section approach. Although great advances have been made in nonlinear 
dynamics by the study of two-degree-of-freedom problems and related 
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area-preserving surface-of-section mappings, much of this detailed under- 
standing is of relevance only to the special case N = 2. 

The important differences between two-mode systems and systems 
with three or more degrees of freedom are due to the dimensionality of the 
phase space structures governing dynamical behavior. For an N-degree-of- 
freedom system, the phase space is 2N-dimensional. The energy hypersur- 
face is defined by the single constraint equation H(q, p)=  E, and thus is a 
(2N-1)-dimensional subspace of the full phase space. Invariant tori are 
characterized by a complete set of N constants of the motion, and thus 
restrict the dynamics to ( 2 N - N =  N)-dimensional subspaces. For N =  2, 
N-dimensional tori divide the (2N-1)-dimensional energy shall into dis- 
joint regions; no chaotic trajectory can cross an intact 2-torus to reach the 
region of the three-dimensional energy shell on the other side, and "leaky" 
tori, called cantori, (36) can act as bottlenecks to energy transport. This 
occurs because, for two degrees of freedom, 2 N - 2  (the dimension of a 
dividing surface on the energy shell) is equal to N (the dimension of an 
invariant torus). 

For N~> 3, however, tori (or cantori) do not have the proper dimen- 
sionality to act as dividing surfaces on the energy shell. A chaotic trajectory 
can avoid an intact torus simply by going around it. Any dividing surface 
in higher-dimensional systems must be made of continuous families of such 
N-dimensional invariant surfaces. As shown by Kolmogorov, Arnold, and 
Moser, (4'36) a finite measure of the invariant tori filling the phase space of 
an integrable nonlinear system survives when a nonintegrable perturbation 
is added. The survivors are located in regions where the ratios of the 
frequencies of motion are sufficiently irrational. Tori with frequencies in 
resonance are destroyed by the perturbation. Although the KAM theorem 
guarantees that, for sufficiently small perturbations, some tori will persist, 
number theory tells us that rational numbers are densely distributed among 
real numbers, and thus there are destroyed tori between any two persistent 
ones. Therefore, strict dividing surfaces cannot exist in (N~> 3)-degree-of- 
freedom systems; they are everywhere pierced by destroyed rational tori. 
The network of destroyed rational tori is called the Arnold web, and makes 
possible energy transport throughout the entire phase space. This process 
is called Arnold diffusion. (4'5'36) 

Another factor complicating the study of many-dimensional systems is 
that the surface-of-section technique cannot be applied to visualize phase 
space structure on a two-dimensional plot, as a slice through a higher- 
dimensional energy hypersurface will itself have a dimension greater than 
two. This problem of visualization, coupled with the new phenomena 
present, has left many unanswered questions and outstanding problems in 
the theory of many-dimensional Hamiltonian dynamics. (4-6) 

822/68/1-2-15 
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To make progress in the classical and quantum qualitative analysis of 
many-dimensional systems, alternative methods of visualization must be 
employed. These must, of necessity, reduce the number of phase space 
variables considered. In this section, we describe an approach to (N = 3)- 
dimensional systems that allows comparison of classical phase space 
structure and quantum mechanical eigenstates. 

We consider a system consisting of three coupled nonlinear oscillators 
modeling highly excited molecular vibrations. The classical Hamiltonian is 
of the form 

H(I, 0) = Ho(I) + H'(I ,  0) (21) 

where I = (11, 12, 13) and 0 = (01, 02, 03) are the action and angle variables 
of the zeroth-order Hamiltonian Ho. In terms of the action-angle variables, 
the classical Hamiltonian is given by 

Ho(I)=Qlll+SQ212+~Q313+lor + ~ 2 i  2 1  2 + ~3132 (22) 

H'(I ,  0) = 2fl1(I~I2) 1/2 c0s(201 -- 02) 

+ 2fl2(I3112) 1/2 C0S(301 -- 202) + 2fi3([212) 1/2 COS(02 -- 203) (23) 

where the fli are coupling parameters. The zeroth-order Hamiltonian Ho 
corresponds to a set of three uncoupled anharmonic oscillators with 
harmonic frequencies (f21, ~22, f23) and anharmonicities (el, cr e3). The 
actual frequencies of the oscillators depend on action, and are given by 

0Ho(I) 
c~ = OIj ( j =  1, 2, 3) (24) 

The perturbation H'(I,  0) consists of three resonant terms, which are of the 
general form fk(I) cos(k. 0), where fk(I) is a function of action and k is a 
vector with integer components. Each resonant term will have a significant 
effect in regions of phase space where the frequencies co(I) satisfy the 
resonance condition k . r  Here, the phase of the resonant term is 
slowly varying, allowing the resonance to have a large effect on the 
dynamics. A system with a single resonance term can be transformed to a 
one-dimensional action-angle problem, and is thus integrable. The addition 
of further resonance terms destroys the integrability, however, and all 
global constants of the motion beyond the Hamiltonian itself will be 
destroyed in the presence of three independent resonance terms. 

The phase space of this classical system has six dimensions, and is 
therefore not easily visualized. Physically, the most important charac- 
teristics of the dynamics are the rate and extent of energy exchange 
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between the modes. Thus, the mode energies, or equivalently, the zeroth- 
order oscillator actions, are of greatest interest; the angle variables 
describing the accompanying phases are of less importance. We shall 
therefore suppress the angle variables and view a reduced action space of 
the full phase space in our qualitative analysis of this system. 

Figure 5 shows a schematic view of the action space of the system. 
For a small perturbation, the zeroth-order energy H o is approximately 
conserved. This condition constrains the dynamics in action space to lie on 
or near the zeroth-order energy shell H o = E. This is a two-dimensional 
surface in the three-dimensional action space, as indicated. Resonance 
conditions k - ~  = 0 give, for each k, an independent condition among the 
three actions. The results is a set of 2-dimensional resonance surfaces in 
action space. The intersections of these surfaces with the zeroth-order 
energy surface result in a set of resonance lines on the energy shell. Three 
such resonance lines have been indicated in the figure. The presence of a 
single resonance term in H causes a resonance zone to form. A resonance 
zone can be approximately described as the librational portion of a 
pendulum phase portrait; the zeroth-order actions experience extensive 
periodic oscillations inside of the resonance zone in the single resonance 
case. The maximum extent of these oscillations is given by the resonance 
width. The widths of the resonance zones are also indicated schematically 
in Fig. 5. 

The union of the resonance zones for all k constitutes the Arnold 
web. ~4'6) Numerical studies on three-dimensional nonlinear systems indicate 
that energy transport  occurs predominantly along these resonance lines. (4'6~ 

We now describe the calculation and visualization of eigenstates for 
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Ho~ 

12 

11 
k". m=0 

:one 

k'. r 0 

Fig. 5. A schematic view of phase space structure, as seen in a reduced action space, for a 
three-degree-of-freedom nonlinear coupled oscillator problem. See the text for discussion. 



228 Martens 

the quantum version of this system. The quantum Hamiltonian operator 
can be written in terms of creation and annihilation operators as 

H0(l ) = f21(a~a 1 + �89 + I22(at2a 2 + �89 + f23(a*3a 3 + �89 

I 2 i t i 2 ~3(a~a3-1- �89 + �89 ~) + ~2(a2a 2+ ~) + (25) 

H,(i ,O)=[jl[(atl)2a2+ ala2 ] 2  , 

_~_#21-(a~)3a2_l - 3 t 2 + 2 t 2 + f13[a2a3 + (26) al(a2) ] a2(a3) ] 

The equivalence of Eqs. (25) and (26) and the classical Hamiltonian func- 
tions (22) and (23) can be seen by making the following identification 
between action angle variables and the classical analogue of the creation 
and annihilation operators: 

a j  = I ) / 2 e  - igj 

a ] :  I)/Zei~ * ( j =  1,2, 3) 
(27) 

where a* is the complex conjugate of aj. 
The time-independent Schr6dinger equation was solved by 

diagonalization of H in a basis of eigenstates {Inln2n3)} of the zeroth- 
order part H0. A nonvariational basis, consisting of a band of zeroth-order 
states centered around the energy range of interest, was used. Convergence 
of the calculations was checked by increasing the basis size. 

Due to the high dimensionality of phase space, the quantum surface- 
of-section method cannot be applied to visualize the eigenstates of H, and 
an alternative must be found. We stated above that the most important 
aspects of the classical dynamics can be represented in the space of zeroth- 
order action variables, and that the phases of the oscillators are of less 
importance. We use the analogous approach here, and visualize the states 
in zeroth-order quantum number space, which is related to action space 
through the semiclassical quantization relations Ij = (n j +  1/2)h. 

For weak perturbations, classical action trajectories remain on or near 
the surface H o = E. Thus, the features viewed in the full three-dimensional 
action space can be represented approximately on a two-dimensional 
surface. This can be accomplished by projecting the full action space onto 
the (11, I2) plane. In a similar manner, we visualize the eigenstates of H 
on the (na,n2) quantum number plane. For a state I~), we define a 
probability density depending on the three zeroth-order quantum numbers 
p(nl, n2, n3) as 

p(nl, n2, n3) = I(nln2n3 I~O >l = (28) 
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This quantity is equal to Ic(nl, n2, n3)l 2, the square of the appropriate 
coefficient of the basis state Inln2n3) in the expansion of eigenstate I~):  

I~p)= ~ c(nl,n2, n3)[nln2n3) (29) 
t t l n2n3  

This representation loses information about the phase of the contribution 
of the basis state to the eigenstate, just as the classical action space 
contains no information on the relative phases of the oscillators. To project 
the probability density onto the (nl, rt2) plane, we sum over the third 
zeroth-order quantum number n3: 

p(nl, n z ) = ~  p(r/1, n2, n3) (30) 
n3 

A contour plot of this probability density can then be made, and compared 
with the expected classical phase space structure. 

In Figs. 6 and 7, we show eigenstates for cases where only a single 
resonance term is included in the Hamiltonian. Using the semiclassical 
quantization condition l j =  (nj+ 1/2)h, we have drawn lines indicating the 
single classical resonance present in H. 

Figure 6 shows two eigenstates of the system with/31 nonzero and the 
rest of the/~i = 0. This corresponds to the classical Hamiltonian with only 
the 2:1 resonance between modes 1 and 2 present. Figure 6a shows a state 
localized in a region far from the effect of the resonance. Is made up 
predominantly of a single basis state; the contour plot indicates that the 
state is centered on a single grid point (nl, n2). Figure 6b shows another 
eigenstate that is strongly affected by the resonance zone. In this case, the 
state is spread out over a number of the basis states. 

In Fig. 7, we show two eigenstates of the system with f13 as the only 
nonzero coupling constant. Here, a 2:1 resonance exists between modes 2 
and 3. Figure7a shows a state that is not strongly affected by the 
resonance, while Fig. 7b gives a state that is situated in the region corre- 
sponding to resonant classical dynamics. Again, the nonresonant state is 
made up almost exclusively of a single basis state, while the resonant state 
is delocalized over a number of basis states. 

For a single resonance term fk(I )cos(k-0)  appearing in the classical 
Hamiltonian, the time variations of the zeroth-order action vector I are in 
the direction of dI/dt = -VoH(I ,  0), which is proportional to the vector k. 
The quantum state associated with this resonance is delocalized in the same 
direction: along k in quantum number space. This is the quantum analogue 
of the large periodic oscillations of the zeroth-order actions occurring in a 
Hamiltonian with a single resonance. The classical system is integrable in 
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this  case, a n d  no  g l o b a l  ene rgy  t r a n s p o r t  is possible ,  Likewise ,  the  states of  

the  single r e s o n a n c e  q u a n t u m  H a m i l t o n i a n  are  l imi ted  in the i r  ex ten t  of  

de loca l i za t i on ,  a n d  n o n e  of  the  s igna tu res  of  " q u a n t u m  chaos  ''(37) are  

expec t ed  to  exis t  for  this system. 

In  Figs.  8 a - 8 d  we s h o w  four  e igens ta tes  of  the  sys tem wi th  all  th ree  
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Fig. 6. Contour plots of p(n], n 2 )  for two eigenstates of the single-resonance version of 
Eqs. (25) and (26), with a 2:1 resonance between modes 1 and 2. The center of the classical 
resonance is indicated by a line on the figure. (a) A state that is far from the classical resonant 
region, and is localized on a single zeroth-order basis state. (b) A state situated in the classical 
resonance region. The state is spread over several basis states along the direction k. See text 
for further details. 
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resonance terms present. We have indicated the centers of the correspond- 
ing classical resonances as lines on the plots. The eigenstates all show a 
greater extent of  delocalization than in the integrable single-resonance case. 
These states are spread over basis states along the direction of k for the 
appropriate resonance, as in the systems having a single resonance term. In 
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Fig. 7. Contour plots of p(nl, n2) for two eigenstates of the single-resonance version of Eqs. 
(25) and (26), with a 2:1 resonance between modes 2 and 3. The center of the classical 
resonance is indicated by a line on the figure. (a) A state that is far from the classical resonant 
region, and is localized on a single zeroth-order basis state. (b) A state located in the classical 
resonance region. The state is spread over several basis states along the direction k. See text 
for further details. 
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addition, though, states are delocalized along the resonance lines. This new 
phenomenon occurring for the full nonintegrable three-resonance system is 
reminiscent of the classical Arnold diffusion mechanism, where trajectories 
wander along resonance channels in phase space. If a time-dependent wave 
packet were to be localized initially at one point along the resonance zone, 
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Fig. 8. Contour  plots of p(nl,/'/2) for four eigenstate of Eqs. (25) and (26), with all three 
resonance terms present. The centers of the classical resonances have been indicated by lines 
on the figure. (a)-(c) Three states that are situated in the 2:1 resonances zone between modes 
2 and 2, and are delocalized along the resonance line, in a manner  reminiscent of classical 
Arnold diffusion. (d) A state showing a similar effect, but in the 2:1 resonance zone between 
modes 1 and 2. See text for further details. 



Quantum Qualitative Dynamics 

(c) i �9 

28.3 ~'~'~ 

C~2 13.5 

6,8 

21.8 
8.8 

(d) 27.~ 

28.3 

13.5 

6.8 

8,8 

21.8 

233 

11 .8 23.5 35 3 47 g 

n l  

!I .8 23.5 35.3 478 

nl 

Fig. 8. (Continued) 

it would flow, as time progressed, along the resonance channel, in much 
the same way that the classical Arnold web allows energy transport long 
resonance lines. Figures 8a-8c show three states associated with the 2:1 
resonance between modes 2 and 3 that exhibit this delocalization. Figure 
8d displays a similar effect, but along the 2:1 resonance between modes 1 
and 2. 

These preliminary results indicate a delocalization of the quantum 
states of a three-degree-of-freedom system that appears to be a close 
analogue of the classical process of transport along resonances in multi- 
dimensional phase space. We are continuing to investigate the details of 
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classical-quantum correspondence in this and other systems with N~> 3 
degrees of freedom (38) and comparing the results with recent formal 
work.(39) 

7.  D I S C U S S I O N  

In this paper, we have described an approach to the study of classical- 
quantum correspondence based on the qualitative viewpoint of dynamical 
systems. We have discussed an extension of quantum surface-of-section 
methodology to allow nonoscillator problems to be treated, based on the 
use of generalized coherent states associated with arbitrary Lie groups. We 
outlined the general approach, and illustrated the method by using the 
example of SU(2) coherent states to define a quantum surface of section for 
systems involving rotational degrees of freedom. Two examples involving 
vibration-rotation interaction in polyatomic molecules were considered; in 
both cases, strong correlations between classical phase space structure and 
quantum eigenstate density were observed. 

We then presented recent results obtained in our efforts to extend 
qualitative analysis to classical-quantum correspondence in many-dimen- 
sional systems, where the conventional surface-of-section method is not 
applicable. We considered a model Hamiltonian describing three coupled 
anharmonic oscillators, and visualized the quantum eigenstates in the 
quantum analogue of classical action space. The structure of eigenstates in 
integrable single-resonance versions of the system were interpreted in light 
of the oscillation of zeroth-order actions in or near nonlinear resonance 
zones. Additional delocalization of the eigenstates along the classical 
resonances was observed for the fully coupled nonintegrable system, 
showing a quantum phenomenon reminiscent of classical Arnold diffusion. 

Advances in computer technology are providing a steady increase in 
the size and complexity of physical problems that can be addressed by 
direct numerical simulation. However, the ability to simulate a problem is 
not equivalent to gaining physical insight and deep understanding. The 
data generated by "numerical experiments" must be analyzed and inter- 
preted. The qualitative methods described here for analyzing the results 
of large-scale quantum calculations of vibration-rotation structure of 
polyatomic molecules are of potential value in gaining such understanding. 
Efforts are underway to extend these methods to the analysis of realistic 
calculations of molecular vibration-rotation eigenstates. 

The approach outlined here also has relevance to questions regarding 
the extent to which appealing classical nonlinear dynamical mechanisms 
can be employed with confidence in the treatment of inherently quantum 
mechanical molecular dynamics. Our results suggest that the recent 
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models and insight provided by nonlinear dynamics ~ are valuable in 
understanding the properties of the stationary states and dynamics of 
highly excited molecules, at least at a qualitative level. A qualitative study 
of classical dynamics and phase space structure thus can give useful infor- 
mation about the corresponding quantum dynamics and eigenstates of the 
system. 

On a more fundamental level, qualitative understanding of the nature 
of the quantum mechanics of nonlinear dynamical systems is a key 
ingredient in continuing work directed at extending the correspondence 
principle to nonintegrable and chaotic systems. ~176 The detailed features 
of classical phase space, and the extent to which they are reflected in the 
corresponding quantum eigenstates, are of central importance to recent 
efforts aimed at developing formal quantum and semiclassical theories of 
classically nonintegrable systemsJ 37) Such theories attempt to establish 
connections between classical quantities and related features in the quan- 
tum energy spectrum or state space. The results of numerical investigations, 
such as those described here, provide guidance for these analytic formula- 
tions, and suggest which classical phase space structures--periodic orbits, 
invariant manifolds, or others--should play a central role in the analytical 
mechanics of classical-quantum correspondence. 
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